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Abstract—3D sketch-based 3D model retrieval is to retrieve
similar 3D models using users’ hand-drawn 3D sketches as
input. Compared with traditional 2D sketch-based retrieval, 3D
sketch-based 3D model retrieval is a brand new and challenging
research topic. In this paper, we employ advanced deep learn-
ing method and propose a novel 3D sketch based 3D model
retrieval system. Our system has been comprehensively tested
on two benchmark datasets and compared with other existing
3D model retrieval algorithms. The experimental results reveal
our approach outperforms other competing state-of-the-arts and
demonstrate promising potential of our approach on 3D sketch
based applications.

I. INTRODUCTION

Traditional sketch-based 3D model retrieval systems are
built on 2D sketching technology, which require users to draw
sketches on a 2D plane (such as paper, touch screen). However,
constraining user’s sketch to two dimensional space limits
the 3D information that the shape can convey. Therefore, 3D
sketching technology was introduced in 2015 [1][2][3]. 3D
sketching allows users to sketch an object in a 3D space
(for example in the air) by tracking the human hand’s motion
with Kinect. People think 3D sketches should provide a better
description of the object than 2D sketches. However, there is
a lack of a comprehensive study on 3D sketching challenging,
3D sketch understanding, and 3D sketch based applications.
How to understand (translate) 3D sketches drawn by human
hands and how to match 3D sketches with 3D models become
new research problems.

In this paper, we perform an initial study on 3D sketch un-
derstanding and 3D sketch based 3D model retrieval. Although
it seems that 3D sketches encode more shape information
(depth, salient 3D features) than 2D sketches, our research
show that 3D sketches understanding is even more challenging
than 2D sketches understanding due to its complexity, varia-
tion, and uncertainty: (i) Complexity: 3D sketching is more
complex than 2D sketching. For example, drawing a 3D horse
is more difficult than drawing a 2D horse on a paper. Most
of people just try to sketch rough 3D outlines of an object
(Fig. 1). However, these rough outlines are far away from
the real object contours, which introduce a lot of difficulty for

computer to recognize the objects depicted and understand the
semantic information implicated. (ii) Variation: one thousand
people may draw the same object in one thousand different
ways. This issue is particularly obvious in 3D sketching. Two
people are not even able to draw exact the same 3D dogs. (iii)
Uncertainty: 3D sketches only record 3D coordinates of all
the individual points captured from human’s hand movement
during sketching. A lot of noisy and inaccurate points are
captured due to hand shaking, object occlusion, and camera
delay. These difficulties make 3D sketch understanding and
3D sketch based 3D model retrieval very challenging.

To match 3D sketches with 3D models, the most direct way
is to extract shape features from both 3D sketches and 3D
models and compare the distances between them. However, it
turns out such kind of approach doesn’t work well [2] due to
the big gap between the abstract representation of a 3D sketch
and the accurate 3D coordinate representation of a 3D model.

Fig. 1: Example 3D sketches of Kinect300 dataset

Fig. 2: Example 3D models of the SHREC13STB benchmark

Inspired by the above challenges, in this work, we propose
a novel 3D sketch-based 3D model retrieval system CNN-
SBR using multiple advanced deep learning and 3D model



processing techniques. We evaluate our CNN-SBR system
with other state-of-the arts on SHREC’16 3D Sketch Track
Benchmark which consists of two parts: (i) 3D sketch dataset
which consists of 300 3D sketches (30 categories, 10 sketches
per category, also called Kinect300 [1]) and 21 categories have
the corresponding models in the target SHREC13STB dataset.
Fig. 1 shows some example 3D sketches. (ii) 3D model dataset.
This 3D benchmark dataset is built on the SHREC13STB,
which consists of 1258 models unevenly distributed in 90
categories. Fig. 2 shows some example 3D models.

To our knowledge, CNN-SBR system performs best among
all the existing retrieval systems that enable users to search
3D models based on hand-drawn 3D sketches. The main con-
tributions introduced in this work are highlighted as follows:

• A novel 3D sketch-based 3D model retrieval system is
introduced to solve the matching problem between 3D
sketches and 3D models.

• Our CNN-SBR system combines multiple machine learn-
ing and 3D vision processing techniques, which will
explicitly guide the research in 3D sketch understanding

• Comprehensive experiments have been conducted to eval-
uate the state-of-the-art sketch based retrieval approaches
on 3D sketch-based 3D model retrieval.

• The experimental results not only show our approach
outperforms other state-of-the-arts, but also demonstrates
promising application potential of our approach on 3D
sketch understanding, on-line 3D model shopping, and
large scale 3D model search, etc.

II. RELATED WORK

Sketch-based 3D model retrieval targets on retrieving 3D
models given a hand-drawn query sketch. Recently, sketch-
based 3D model retrieval has attracted much attention since
it can be widely used in sketch-based rapid prototyping,
recognition, mobile 3D search, 3D printing, 3D animation
production and etc. In this section, we review three related
areas for our work: sketch recognition, deep CNNs for visual
recognition and sketch-based 3D model retrieval.

A. Sketch Recognition

Most early sketch datasets are the small scale collections
include: artistic drawings [4], professional CAD figures [5],
and specific domain structure sketches [6], [7].

Recently, a large-scale collection of free-hand sketches (TU
Berlin dataset [8]) is open to the public. It contains 20,000
single-object sketches in 250 daily object categories.

In earlier sketch recognition works (i.e., [9] [10]), sketching
is introduced as a human-computer interaction technology in
which mouse or pen is used to draw lines and curves. Recently,
researchers have explored more hand-crafted features, such
as stroke length, stroke order and even stroke orientation
to understand human sketch input at a higher level. Eitz
et al. [8] demonstrated sHOG feature coupled with Bag-of-
Words (BoW) methods on sketch understanding and achieved
a promising result of 56% accuracy in identifying unknown
sketches on TU Berlin dataset.

Very recently, [11] explores that Fisher Vectors, an image
feature representation obtained by pooling local image fea-
tures, can be applied to single-object sketch recognition and
achieves human-like sketch recognition accuracy (68.9% vs.
73.1% for human on the TU Berlin dataset). Despite these
great efforts, hand-crafted features still require researchers to
have solid knowledge on drawings or specific domains. More
general sketch understanding approaches need to be explored.

B. Deep CNNs for Visual Recognition

Recently, deep CNNs have showed promising results on
many vision recognition tasks in different domains. CNN
was introduced in early 1980s, and was applied to solve
simple and small vision recognition tasks like handwritten
digit recognition [12].

In early time, the biggest bottleneck of deep CNN was
the high computational cost when the number of classes and
input data volume are large, which significantly increase the
number of neurons in CNN. However, with the proliferation
of modern GPUs, this bottleneck has been relieved. With
the introduction of rectifier linear (ReLU) [13], max-pooling,
local response normalization (LRN) [14], and dropout reg-
ularization units [15], CNNs become more effective, robust,
and applicable. In particular, some benchmarks’ top results in
visual recognition challenges, e.g., ILSVRC [16], have been
dominated by deep CNNs-based approaches. Yu et al. [17]
designed a sketch-oriented deep CNN model “Sketch-A-Net”
for sketch recognition task and achieved the accuracy of 74.9%
on TU Berlin dataset. Nevertheless, most previous works focus
on 2D sketch understanding tasks.

C. Sketch-Based 3D Model Retrieval

In computer vision community, the effort of sketch-based re-
trieval research work has been introduced for many years [18].
Early works on this task focus on global shape descriptors,
such as distance functions [19] and shape statistics [20].
Recently, researchers employ local features for partial match-
ing [21] for 3D model retrieval.

Most of the above 3D model representation methods are
borrowed from traditional 2D feature, such as BF-DSIFT [22]
which is an extended SIFT feature with Bag-of-Features.
Therefore, it is important to choose a good representation
of line drawing images for sketch-based 3D model retrieval.
Recently, Eitz et al. [23] proposed the GALIF and built on a
collection of Gabor filters followed by a BoW method.

Instead of relying on the traditional 2D image features, some
methods also explore graph-based feature [24] and semantic
labeling [25] to facilitate the 3D model retrieval. In this
work, we employ view-based methods and only use 2D sketch
features in 3D model retrieval.

III. OUR APPROACH

A. CNN-SBR Architecture Overview

Our CNN-SBR system, which is demonstrated in Fig. 3,
is inspired by early sketch-based image retrieval work. We
employ state-of-the-art deep CNN in sketch object recognition
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Fig. 3: Illustration of CNN-SBR architecture

and combine multiple 3D model processing techniques in this
work. We first pre-train our deep CNN model on TU Berlin
dataset and obtain well-learned weights for our CNN model.
Then, we convert all the 3D sketches to multiple 2D sketch
views for both training and query datasets, and perform data
augmentation for these 2D sketch views, then fine-tune the
CNN model using previously well-learned weights. After that,
we have the classification result for each query 3D sketch
based on its 2D sketch views and fine-tuned CNN model.
Finally, we use majority vote and simple label matching to
generate the output result.

B. Data Processing

To adapt the framework for 2D sketch-based CNN model,
we need to convert the 3D sketches to 2D sketch views. We
project all the coordinates in each 3D sketch to its six square
faces, if we regard a 3D sketch as regular hexahedron, and
map the 3D coordinates to 2D depth image where the pixel
value represents the distance to its view point (0 is the nearest
while 255 is the furthest).

We also employ the data augmentation technique to prevent
the over-fitting issue in deep CNN method. In our experiments,
we replicate both TU Berlin dataset and 2D sketch views
by 500 times using random rotation, shift and flip. More
specifically, we describe our algorithm as Algorithm 1.

Based on this algorithm, an image duplicate would be
generated with one or more image transformations of shift,
rotation and flip. We introduce this random data augmentation
algorithm to increase the variety of the experiment dataset,
which significantly reduces the sketching noise from different
user hand-drawing.

C. Applying Sketch-A-Net to CNN-SBR System

In this work, we employ Sketch-A-Net as our core CNN
model for our CNN-SBR 3D model retrieval system. Sketch-
A-Net is designed for 2D single object sketch recognition
problem. Based on our best knowledge, Sketch-A-Net has the
best performance on 2D single object sketch recognition. We
feed it with the TU Berlin dataset as the ancillary training
dataset for pre-training. Although the TU Berlin dataset is
obtained from human 2D sketching, it provides Sketch-A-Net

Input: Original 3D sketch dataset S
Output: Enlarged 3D sketch dataset T with random

shifts, rotations, and flips
initialization;
w = widthoriginal − widthtarget;
foreach I ∈ S do

for i← 1 to 500 do
C ← copy(I);
xshift ← random(0, w);
yshift ← random(0, w);
C ← shift(C, xshift, yshift);
roll← random(0, 1);
if roll < 0.5 then

rd← random(−5, 5);
C ← rotate(C, rd);

end
roll← random(0, 1);
if roll < 0.5 then

C ← flip(C)
end
append(T,C);

end
end

Algorithm 1: Data augmentation algorithms

a good representation of drawing features which could help
Sketch-A-Net to build an initial learning weight for future
fine-tuning on 3D sketch dataset.

In fine-tuning step, instead of employing mature learned pre-
trained model (training epoch over 500), we choose the pre-
trained model at epoch 50, or a semi-mature model, whose
local optima has not been convergent yet and the learning
weights are still flexible. We find using this method would
significantly alleviate the over-fitting issue and improve the
retrieval performance.

D. Majority Vote and Label Matching

For each 3D sketch, we use majority vote algorithm to
choose the final classification label based on its six 2D sketch
views. More specifically, for each 2D sketch view, we have
a similarity vector for predicting categories. Thus, we have



TABLE I: Performance metrics comparison on the SHREC’16 [26] 3D Sketch Track Benchmark.

Participant Method NN FT ST E DCG AP
Complete benchmark (Non-learning based methods)
LL 3DSH 0.029 0.021 0.038 0.021 0.254 0.029
Fan LSFMR 0.033 0.020 0.033 0.018 0.248 0.032

Li CNN-Point 0.124 0.044 0.075 0.046 0.294 0.060
CNN-Edge 0.114 0.056 0.084 0.051 0.302 0.063

Tabia

HOD1-4 0.029 0.015 0.035 0.026 0.259 0.032
HOD64-1 0.052 0.031 0.053 0.034 0.274 0.044
HOD64-2 0.067 0.031 0.057 0.032 0.272 0.044
HOD64-4 0.124 0.019 0.022 0.013 0.230 0.026

Testing dataset (Learning-based methods)
Ye CNN-SBR 0.222 0.251 0.320 0.186 0.471 0.314
Yin CNN-Maxout-Siamese 0.000 0.031 0.108 0.048 0.293 0.072

totally six similarity vectors and six top-1 labels for six sketch
views. In order to rank the categories correctly, we use the
following method to evaluate the similarity vectors:

1) We re-scale the similarities between a 3D sketch and
target 3D model categories to range [0, 1]. A higher value
means bigger similarity.

2) For each target 3D model category, we first count the
number of top-1 labels among six similarity vectors. The
top-1 label count must be an integer in the range of [0, 6].

3) We then compute the average similarity between this
sketch and target 3D model categories based on six
similarity vectors. Average similarity would also fall into
the range of [0, 1].

4) Finally, we rank all the target 3D model categories
using the summation of the top-1 label count and the
average similarity, and then rank all the related models
accordingly.

Based on the above algorithm, we first consider those target
3D model categories that have the most top-1 label count and
rank them at the top places. It should be noted that in the
experiment there are only six top-1 labels but 21 target 3D
model categories. In this case, some target categories may
have the same top-1 label count, then we need to compute
the average similarities between the input 3D sketch and all
the target 3D model categories to rank those categories. After
that, for each query 3D sketch, we can simply rank the target
3D models based on the rank of their categories which are
obtained in the above method.

IV. EXPERIMENTS AND COMPARISONS

To comprehensively evaluate the performance of our CNN-
SBR system, we participated in a 2016 Shape Retrieval
Contest (SHREC’16) track [26] which targets on 3D sketch-
based 3D model retrieval. There are six teams who partici-
pated in this SHREC’16 challenge and one baseline method
(3DSH [27]). All the participating algorithms are evaluated
either on the test dataset (3 sketches per class, totally 90
3D sketches) of the SHREC’16 3D sketch track benchmark
for learning based algorithms or on the complete dataset (10
sketches per class, 300 sketches) for non-learning based algo-
rithms. Our CNN-SBR system achieved the best performance

on all the evaluation metrics in the SHREC’16 challenge. In
this section, we compare our CNN-SBR system with several
other participating methods and discuss the possible reasons
why our method outperforms others.

A. Running Cost

We implemented CNN-SBR system using Matlab and the
MatConvNet toolbox. All the experiments were excuted on
a server with an 8-core 3.50GHz CPU and a GeForce GTX
Titan X GPU. The pre-training time on the TU Berlin dataset is
approximately 1 hour on GPU, while fine-tuning on Kinect300
dataset is about 30 minutes on GPU. Label matching and
majority voting only take several minutes.

B. Evaluation Results

We perform the comparison based on six widely-used eval-
uation metrics [28]: Nearest Neighbor (NN), First Tier (FT),
Second Tier (ST), E-Measure (E), Discounted Cumulative
Gain (DCG), Average Precision (AP) on the test dataset of
SHREC’16 3D Sketch Track Benchmark for learning based
participating algorithms and on the complete dataset for non-
learning based algorithms. The results are compared in Table I.
We also perform the Precision-Recall comparison in Fig. 4.

From the above table and figure, we can see that our CNN-
SBR retrieval system beats other learning-based participating
algorithms on all the evaluation metrics. The performance is
also significantly better than those achieved by non-learning
based approaches. We can also learn from this table that 3D
sketch-based 3D model retrieval is a very challenging task.
Most participating methods have less than 10% accuracy on
the nearest neighbor metric.

C. Competition Methods

We now review some representative competition methods
in SHREC’16 challenge.

LSFMR is a non-learning based method and proposed by
Fan et al. It consists of two components: LSF extraction and
Manifold ranking. In preprocessing, SVM is applied to remove
the noise points of the 3D sketches while PCA is applied
to normalize their positions. Then, the local features of the
training 3D sketch data are clustered using k-means method.



Fig. 4: Precision-Recall comparison on the complete dataset
of SHREC13STB for non-learning based algorithms and on
the testing dataset for learning based algorithms

LSF feature describes the local region shape, which comes
with the dense grid division and serves as a local statistical
feature. A dense network is built based on this feature and it
captures both the local and global features. The local region is
divided into L×L×L cells to calculate the 3D points statistical
distribution in the local region. For each cell, the feature value
is the number of points in the cell. The final representation of
a local region is 1-D vector constructed by accumulating all
the cell feature values. To compare two LSF vectors, instead
of employing Euclidean distance, χ2 distribution is used.

χ2(F1, F2) =

√√√√ L3∑
c=1

(
F1(c)− Eχ(F1)

Eχ(F1)
) +

L3∑
c=1

(
F2(c)− Eχ(F2)

Eχ(F2)
)

(1)
where F denotes LSF vector, Eχ denotes the expectation of
F .

HOD is a non-learning based method and proposed by Tabia
et al. The main idea of HOD is to build a dubbed Histogram of
Oriented Distances descriptor based on the joint distribution of
two parameters accumulated in a 2D histogram. The algorithm
is constructed as follows:

1) Randomly sample n points P = {pi, i = 1 . . . n} from
the 3D sketch.

2) Compute the Euclidean distance di = ‖pi − pj‖ and
measure the angle θij between the two vectors −→cpi and
−→cpj , where c is the sketch’s center of mass.

3) Compute the probability distribution of the distance d ∈
R+ and the orientation θ ∈ [0, π] of the sample pairs of
points as a 2D histogram h(d, θ).

CNN-Point and CNN-Edge are non-learning based meth-
ods and proposed by Li and M. Ovsjanikov. The only differ-
ence between these two methods is the processing techniques
that were applied on the query dataset. First, it transform a
3D model to a point cloud, while noise is randomly added
during its transformation. Similarly, a query 3D sketch is also
converted to a point-based or edge-based 3D sketch. Then,

each point cloud is rendered from 120 uniformly distributed
viewpoints to generate a gray-scale image of size 128× 128.
Finally, a classifier is trained on the resulting image dataset,
which consists of 150960 images.

CNN-Maxout-Siamese is a learning-based method and
proposed by Yin et al. CNN-Maxout-Siamese follows a similar
design scheme like our CNN-SBR. In this system, it em-
ploys randomly sampled 2D views, together with their data
augmentation, as the input and feed them into two Siamese
CNN network phases (one for view domain and the other for
sketch domain). Finally, the similarity distances between the
3D models and the query 3D sketches are calculated based on
the Euclidean distance.

It should be noted that, among all the participating methods
only CNN-SBR and CNN-Maxout-Siamese are learning-based
methods. Compared with other non-learning based methods,
we can find they still have a big performance gap if compared
with our CNN-SBR system. CNN-Maxout-Siamese employs a
similar design scheme as CNN-SBR, but its nearest neighbor
(NN) accuracy is close to 0.

If we review the details of implementation, our CNN-SBR
system has the following advantages over other competitors:

• Instead of extracting conventional hand-crafted features,
like HOD, 3DSH and LSFMR, we employ deep CNN
as a more general and adaptive feature learning strategy.

• CNN-SBR performs data augmentation on 2D sketch
views of 3D sketch, which significantly enlarges the
dataset size and alleviates over-fitting.

• CNN-SBR applies Sketch-A-Net as our core CNN model
and pre-trains the model using TU Berlin dataset. Other
CNN-based methods, including CNN-Point, CNN-Edge,
and CNN-Maxout-Siamese, do not choose Sketch-A-Net
as the core CNN model. They also do not employ this
pre-training technique to boost the performance.

• Semi-mature CNN model after pre-training, which gives
initial well-learned weights but still keeps the CNN model
flexible for a following fine-tuning.

V. CONCLUSION AND FUTURE WORK

3D sketching in 3D space and 3D sketch-based 3D model
retrieval are brand new research topics. Very little prelimi-
nary work exists in this field, which allows us for explor-
ing many exciting and interesting results. In this paper, a
novel 3D sketch-based 3D model retrieval system CNN-SBR
is proposed. CNN-SBR outperforms all other participating
algorithms over all the evaluation metrics and achieves the
top-1 performance in the SHREC’16 3D sketch-based 3D
shape retrieval challenge. In the paper, we also discuss the
advantages of our CNN-SBR approach, compared with other
participating algorithms. Future goals include a further explo-
ration of adaptively representing 3D sketches and 3D models
using CNNs, and training our system for better 3D sketch
and 3D model matching based on a larger collection of 3D
sketches from more diverse users.
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